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Abstract

Bayesian inference has been used successfully for

many problems where the aim is to infer the param-

eters of a model of interest. In this paper we for-

mulate the three dimensional reconstruction problem

as the problem of inferring the parameters of a sur-

face model from image data, and show how Bayesian

methods can be used to estimate the parameters of this

model given the image data. Thus we recover the three

dimensional description of the scene. This approach

also gives great 
exibility. We can specify the geomet-

rical properties of the model to suit our purpose, and

can also use di�erent models for how the surface re-


ects the light incident upon it. In common with other

Bayesian inference problems, the estimation method-

ology requires that we can simulate the data that would

have been recorded for any values of the model parame-

ters. In this application this means that if we have im-

age data we must be able to render the surface model.

However it also means that we can infer the parame-

ters of a model whose resolution can be chosen irre-

spective of the resolution of the images, and may be

super-resolved. We present results of the inference of

surface models from simulated aerial photographs for

the case of super-resolution, where many surface ele-

ments project into a single pixel in the low-resolution

images.

1 Introduction
Bayesian inference has proved to be the method of

choice for many inference problems, enabling accurate

estimation of parameters of interest from noisy and

incomplete data, and also providing estimates of the

errors associated with the inferred parameters. The

general approach is illustrated in �gure 1. The �g-

ure shows that synthetic observations of the model are

made using a computer simulation of the observation

process, and these are compared with the actual ob-

servations. The error between the actual and the sim-

ulated observations is used to adjust the parameters

of the model, to minimize the errors. The estimation

of the errors on the parameter estimates (or more gen-

erally, the estimation of the covariance matrix of the

parameters) means that the parameter estimates can

be updated when more observations become available.

In reconstruction of three dimensional surfaces, the

model is a parameterized surface model, and the mea-

surement system is a computer model of the image

formation process.

The surface model is chosen to suit the desired ap-

plication. For example it could be a CAD model if

the data is images of machine parts, or a spline model

if the data came from more general objects. In our

application, we are interested in recovering planetary

surfaces, and hence we choose to describe the surface

by a triangular mesh. This is a standard model in

computer graphics, and it allows the density of the

mesh to vary spatially.

The model of the image formation process is the

area of computer graphics known as rendering. A

model of how light is re
ected from the surface is

used, together with an abstraction of how the image

is formed, to synthesize the image that would have

been recorded from the current surface model under

the lighting conditions and camera position and orien-

tation. The parameters describing surface re
ectance

properties are part of the surface model that are to

be inferred together with the geometrical parameters.

The theoretical exposition in this paper is valid for any

parameterized re
ection function. The results assume

Lambertian re
ection.

The formation of a synthetic image from a parame-

terized surface model, lighting and camera parameters

is discussed in more detail in section 3. Here we just

note that current rendering technology is unsuitable

for our purpose because it operates in image space,

and so the image formed has artifacts due to the rel-
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Figure 1: An outline of the Bayesian approach to sur-

face reconstruction

ative sizes of the projection of the surface elements

onto the image plane and their discretization into pix-

els. These artifacts are particularly noticeable along

the edges of surface elements (aliasing). Also, if the

projections of the surface elements in the pixel plane

are very small, such as when we are trying to infer a

high resolution mesh frommany low resolution images,

these artifacts dominate the `standard' rendering pro-

cess. The renderer that is required for our purposes

is one that operates in object space, and in section 3

we brie
y describe such a system. An object-space

renderer can also compute the derivatives of the pixel

values with respect to the surface model parameters.

This is a crucial part of the inference process, and is

described in detail in section 3.1.

One of the major goals of this paper is to develop

the Bayesian inference approach for 3D super-resolved

surface reconstruction when the resolution of inferred

surface mesh is higher than the spatial resolution of in-

put images. This also enables image super-resolution:

synthetically produced images of the super-resolved

surface model can be at higher resolution than the

input data images.

1.1 Previous Work

Most previous work in the area of the estimation of

three dimensional surfaces from image data has used,

shape from shading, shape from motion and shape

from stereo (more generally, `shape from X').

In shape from shading [3], image gradients are re-

lated to surface derivatives under the assumption of

orthographic projection. Using assumed boundary

conditions, the surface derivatives can be integrated

to produce an estimate of the surface heights (more

strictly, the distance from the camera to the points on

the surface).

Shape from stereo [8] uses correspondence matches

between features in the images to give the disparity

between these features. Finding these correspondence

matches is aided by using the epipolar constraint [8].

If the camera geometry is known then the disparity

can be directly related to the distance of the feature

from the camera, and the feature can be located in

space. The discrete points corresponding to the fea-

tures matched in the images are then joined to form a

representation of the surface.

A drawback of shape from stereo is that the density

of points in the recovered surface is unknown a-priori,

and is dependent on the number and density of fea-

tures found in the images. A feature detector giving

few features gives a very coarse surface representation;

one that gives very many is likely to produce features

that can be mismatched between images.

Shape from shading has the drawback that the spa-

tial density of the recovered surface is �xed at the

image density. It is also di�cult to apply if the re-


ectance properties are spatially varying. Both of

these approaches have di�culty incorporating new ob-

servations of the surface that become available after

the initial estimate is made.

A Bayesian approach was used for image super-

resolution in the series of papers beginning with [6]. In

the earlier work in [7], input images were taken from

roughly the same direction under the similar lighting

conditions. In that work the surface model is essen-

tially represented as 2D texture map. In our case of

full 3D surface reconstruction this restriction is lifted:

low resolution input images as well as high-resolution

output images can correspond to very di�erent values

of registration parameters.

2 A Bayesian Framework
In this paper the surface geometry is represented

by a triangular mesh and the surface re
ectance prop-

erties (albedos) are associated with the vertices of the

triangular mesh. We will consider the case of Lamber-

tian surfaces. We will also assume known the camera

parameters and the parameters of the lighting. The

estimation of these parameters will be considered in

a forthcoming paper using the same Bayesian frame-

work.

Thus we represent the surface model by the pair of

vectors [~z ~� ]. The components of these vectors cor-

respond to the height and albedo values de�ned on a

regular grid of points

[~z ~� ] = f(zi; �i) ; i = ` (q x̂+ p ŷ)g q; p = 0; 1; : : :
(1)

where ` is the elementary grid length, x̂, ŷ are an

orthonormal pair of unit vectors in the (x,y) plane

and i indexes the position in the grid. The pair of

vectors of heights and albedos represents a full vector

for the surface model

u = [~z ~� ]: (2)



To estimate the values of ~z; ~� from image data, we

apply Bayes theorem which gives

p(~z; ~� jI1 : : : IF ) / p(I1 : : : IF j~z; ~� ) p(~z; ~� );

where If (f = 1; : : : ; F ) is the image data. This states

that the posterior distribution of the heights and the

albedos is proportional to the likelihood { the prob-

ability of observing the data given the heights and

albedos { multiplied by the prior distribution on the

heights and albedos.

The prior distribution is assumed to be Gaussian

p(~z; ~� ) / exp

�
�
1

2
u��1 uT

�
; (3)

��1 =

�
Q̂=�2h 0

0 Q̂=�2�

�
;

where the vector of the surface model parameters u

is de�ned in (2). The inverse covariance matrix is

constructed to enforce a smoothing constraint on lo-

cal variations of heights and albedos. We penalize

the integral over the surface of the curvature factor

c(x; y) = z2xx + z2yy + 2z2xy, and similarly for albedos.

We approximate the partial derivatives in c(x; y) using
�nite di�erences of the height (albedo) values. Then

coe�cients of Q̂ form a 5�5 template �̂ and result

from summing c(x; y) over the surface

Q̂q+n;p+m
n;m = �q;p; q; p = �2; : : : ; 2: (4)

For brevity we do not provide here explicit values for

the coe�cients �q;p. The two hyperparameters �h and
�� in equation (3) control the expected values of the

surface-averaged curvatures for heights and albedos.

This prior is placed directly over the height vari-

ables, z, but albedos are only de�ned over the range

[0 � 1]. To avoid this, we use transformed albedos �0i
in the Gaussian (3), where �0i are de�ned by:

�0i = log(�i=(1� �i)); u! [~z ~�0 ]: (5)

In the vector of model parameters u values of ~� are

replaced by values of ~�0.

For the likelihood we make the usual assumption

that the di�erences between the observed data and the

data synthesized from the model have a zero mean,

Gaussian distribution, and also assume that the im-

ages If comprising the data are conditionally inde-

pendent. This gives

p(I1 : : : IF j~z; ~� ) / exp

 
�

P
f;p(If p � Îf p(~z; ~� ))

2

2�2e

!

where Îf p(~z; ~� ) denotes the pixel intensities in the im-

age f synthesized from the model, �2e is the noise vari-
ance and the summation is over the pixels (p) and over
all images (f) used for the inference.

Consider the negative log-posterior.

L(~z; ~� ) /

P
f;p(If p � Îf p(~z; ~� ))

2

�2e
+ x��1 xT ; (6)

where x = u�u0 is a deviation from a current estimate

u0. L is a nonlinear function of ~z; ~� and the MAP

estimate is that value of ~z; ~� which minimizes L(~z; ~� ).
In the case of images with no shadows or visible

occlusions which we consider here, the log-posterior

is in general unimodal and gradient methods can be

applied for minimizing L(~z; ~� ). We linearize Î(~z; ~� )
about the current estimate, ~z0; ~�0

Î(~z; ~� ) = Î(~z0; ~�0 )+Dx; D �

(
@Îf p
@zi

;
@Îf p
@�0i

)
(7)

where D is the matrix of derivatives evaluated at

z0; �0. Then the minimization of L(~z; ~�) is replaced

by minimization of the quadratic form:

L0 =
1

2
x Âx� bx; x � u� u0;

Â = ��1 +
DDT

�2e
; (8)

b =
(I � Î(~z0; ~�0 ))

�2e
D:

Here Â is the Hessian matrix of the quadratic form and

vector b is the gradient of the likelihood L computed

at the current estimate. We search for the minimum

in x using a conjugate-gradient method. At the min-

imum we update the current estimate, u1 = u0 + x,

recompute Î and D, and repeat the minimization pro-

cedure iteratively until the current estimate uk ap-

proaches the minimum of L(~z; ~� ).
Thus to �nd the MAP estimate requires that we can

render the image and compute the derivatives for any

values of the surface model parameters. We discuss

this computation in some detail in the next sections.

Here it is su�cient to note that while forming Î us-

ing only object space computation (see section 3) is

computationally expensive, we can compute D at the

same time for little additional computation. Also the

derivative matrix is sparse with the number of nonzero

entries a few times the number of model parameters.

This makes the process described above a practical

one. Convergence is also accelerated by using a multi-

grid approach.
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Figure 2: Geometry of the triangular facet, illumina-

tion direction and viewing direction. ẑs is the vector

to the illumination source; ẑv is the viewing direction.

At convergence we compute a new inverse covari-

ance matrix, (��1) 0 = ��1 +DDT =�2e . This is then
used as a prior inverse covariance matrix when new

image data of the same surface is obtained, enabling

a recursive update and integration of data recorded

at di�erent times. The posterior inverse covariance

matrix gives information about the uncertainty of the

estimated surface.

3 Formation of the image and the

derivative matrix.

The task of forming an image, Î , given a surface

description, ~z; ~�, and camera and illumination param-

eters is the area of computer graphics known as render-

ing [2]. Most current rendering technology is focused

on producing images which are visually appealing, and

producing them very quickly. As discussed in the in-

troduction, this results in the use of image-space al-

gorithms, with the fundamental assumption that each

triangle making up the surface, when projected onto

the image plane, is much larger than a pixel. This

makes reasonable the assumption that any given pixel

receives light from only one triangle, but does produce

images with artifacts at the triangle edges. Standard

rendering also produces inaccurate images if the tri-

angles project into areas much smaller than a pixel on

the image plane, as the pixel will then be colored with

a value coming from just one of the triangles.

Clearly this approach is not suitable for high-

resolution 3D surface reconstruction from multiple im-

ages. The triangles in a high-resolution surface may

project onto an area much smaller than a single pixel

in the image plane (sub-pixel resolution). Therefore,

as discussed in the introduction, for our system we

implemented a renderer for triangular meshes which

performs all computation in object space. At present

we neglect the blurring e�ect due to di�raction and

due to the role of pixel boundaries in the CCD array.

Then the light from a triangle as it is projected into a

pixel contributes to the brightness of the pixel with a

weight factor proportional to the fraction of the area

of the triangle which projects into that pixel. This

produces anti-aliased images and allows an image of

any resolution to be produced from a mesh of arbitrary

density, as required when the system performing the

surface inference may have no control over the image

data gathering.

Our renderer computes brightness Îp of a pixel p in
the image as a sum of contributions from individual

surface triangles 4 whose projections into the image

plane overlap, at least partially, with the pixel p.

Îp =
X
4

fp
4

�
4
: (9)

Here �
4
is a radiation 
ux re
ected from the triangu-

lar facet 4 and received by the camera, and fp
4

is the

fraction of the 
ux that falls onto a given pixel p in the
image plane. In the case of Lambertian surfaces and

a single spectral band �
4
is given by the expression

�
4
= �E(�s) cos�v cos� ��
; (10)

E(�s) = �A (Is cos�s + Ia) :

�
 = S=d2:

Here � is an average albedo of the triangular facet.

Orientation angles �s and �v are de�ned in �gure 2.

E(�s) is the total radiation 
ux incident on the trian-

gular facet with area A. This 
ux is modeled as a sum

of two terms. The �rst term corresponds to direct ra-

diation with intensity Is from the light source at in�n-

ity (commonly the sun). The second term corresponds

to ambient light with intensity Ia. The parameter �
in equation. (10) is the angle between the camera axis

and the viewing direction (the vector from the surface

to the camera); � is the lens fallo� factor. �
 in (10)

is the spatial angle subtended by the camera which

is determined by the area of the lens S and the dis-

tance d from the centroid of the triangular facet to the

camera.

We identify the triangular facet 4 by the set of 3

indices (i0; i1; i2) from the vector of heights (1) that

determines the vertices of the triangle in a counter-

clockwise direction (see �gure 2). In the r.h.s of equa-

tion (10) we have omitted for brevity those indices

from all the quantities associated with individual tri-

angles. The average value of albedo for the triangle



in (10) is computed based on the components of the

albedo vector � corresponding to the triangle indices

�
4
� �i0;i1;i2 =

1

3
(�i0 + �i1 + �i2): (11)

We note that using average albedo (11) in the ex-

pression for �
4
is an approximation which is justi�ed

when the albedo values vary smoothly between the

neighboring vertices of a grid.

The area A of the triangle and the orientation an-

gles in (10) can be calculated in terms of the vertices

of the triangle Pi (see �gure 2) as follows:

n̂ � ẑs = cos�s; n̂ � ẑv = cos�v ; (12)

n̂ =
vi0;i1 � vi1;i2

2A
; vi;j = Pj �Pi

Here n̂ is a unit normal to the triangular facet and

vectors of the edges of the triangle vi;j are shown in

�gure 2.

We use a standard pinhole camera model with no

distortion in which coordinates of a 3D world point

P = (x; y; z) are �rst rotated with the rotation matrix

R̂ and then translated by the vector T into camera

coordinates, yielding Pc = (xc; yc; zc)

Pc = R̂P+T (13)

(R̂ and T are expressed in terms of the camera regis-

tration parameters [2]. We do not give them explicitly

here). After the 3D transformation given in (13), point

Pc in the camera coordinate system is transformed us-

ing a perspective projection into the 2D image point
�P = (�x; �y) using a focal length f and aspect ratio a.�

�x
�y

�
= �

f

zc

�
a xc
yc

�
: (14)

We use 2D image projections of the triangular ver-

tices Pi to compute the area fraction factors fp
4

for

the surface triangles (cf. Eq. (9))

fp
4

=
�Apolygon

�A
4

: (15)

Here �A
4

is the area of the projected triangle on the

image plane and �Apolygon is the area of the polygon

resulting from the intersection of the projected trian-

gle and boundary of the pixel p (see �gure 3).

3.1 Computation of the derivative ma-
trix.

The inference of the surface model parameters de-

pends on the ability to compute the derivatives of the

modeled observations Î with respect to the model pa-

rameters. According to equation (9), the intensity Îp
of a pixel p depends on the subset of the surface pa-

rameters, (heights and albedos), that are associated

with the triangles whose projections overlap the pixel

area.

The derivatives Îp with respect to logarithmically

transformed albedo values are easily derived from

equations (5), (9) and (10).

In our object-space renderer, which is based on

pixel-triangle geometrical intersection in the image

plane, the pixel intensity derivatives with respect to

the surface heights have two distinct contributions

@Îp
@zi

=
X
4

 
fp
4

@�
4

@zi
+�

4

@fp
4

@zi

!
(16)

Variation of the surface height zi gives rise to varia-

tions in the normals of the triangles associated with

this height (in a general triangular mesh, on average 6

triangles are associated with each height) and this pro-

duces the derivatives of the total radiation 
uxe �
4

to the camera from those triangles. This is the �rst

term in equation (16). Also, height variation gives rise

to the displacement of the corresponding point which

is the projection of this vertex on the image plane.

This results in changes to the areas of the triangles

and polygons with edges containing this point (see �g-

ure 3). This produces the derivatives of the fractions

fp
4

, the second term in equation 16.

When the triangle is completely inside the pixel its

area fraction fp
4

= 1 and according to (16) its con-

tribution to the pixel intensity derivative equals the

derivative of the corresponding radiation 
ux, @�=@zi.
The 
ux derivative can be computed directly from the

coordinates of the triangle vertices and the camera

position using Eqs. (10) and (12). For the surface tri-

angle with vertices (Pi0 ;Pi1 ;Pi2) the 
ux derivative

with respect to the z component of the vertex Pi0

equals

@�

@zi0
=

1

2
�(Pi2 �Pi1)� ẑ � g

S

d2
; (17)

where

g = Is(ẑv cos�s + ẑs cos�v � n̂ cos�s cos�v) + Iaẑv

and ẑ is a unit normal in the vertical direction.

When the triangle is projected into more than one

pixel then the height derivatives of the projected area

fraction in (16) have to be computed for every pixel

intersecting with the triangle. This can be done using

the following chain rule arguments.
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essentially plays a role of regularizer.

Indeed, one can show based on the analysis from the

previous section that the magnitude of the derivatives

j@Îp=@zij can be much larger for the surface vertices

whose triangles intersect the boundary of the pixel p
than for the vertices that are projected fully inside of

the pixel p along with all triangles surrounding them.

When the number of triangles per pixel increases (typ-

ically > 10� 15) this can give rise to a strong spatial

modulation of the derivative values that re
ect the

positions of the pixel boundaries.

We note that misalignment of the pixel boundaries

from di�erent data images of the same area is crucial

for the surface reconstruction [6]. This gives rise to

a very irregular spatial pattern of the coe�cients of

DDT and b in equation (8) that results from summa-

tion over all input data images.

To achieve the regularization we adjust ��1 in

equation (8) to be on the same scale as the matrix

elements of DDT =�2e . Scale of DDT depends on a

grid size `. For height derivatives DDT � `2 and for

albedo derivatives DDT � `4. This sets the scale of

the hyperparameters �h and �� for di�erent levels of

the multigrid. We compute the values of �h and ��
based on the average diagonal values of DDT . In par-

ticular, for the heights

�2e=�
2
h � trace

n
DDT

o
h
=(N �0;0); (20)

where the trace ofDDT is taken with respect to height

and N is the number of heights. The value of �� is

readjusted in a similar way. �0;0 is a coe�cient from

the smoothness prior (see equation 4).

Finally, to achieve local adaptiveness of the prior

we place the curvature penalty in equations (6), (8)

on the deviation from the current surface estimate,

u� uk, not on the estimate itself.

5 Results

As a test example we used a triangulated surface

whos heights correspond to the digital elevation model

(DEM) of the Duckwater region (Nevada). We pre-

pared the surface albedos synthetically to �t an exist-

ing Landsat image data of the same region. The sur-

face is of dimension 297 � 297 heights and the same

number of albedos. Sixteen low-resolution images of

the surface were produced using the simple perspective

sensor model (14), with di�ering lighting and camera

orientations. Each image is 128� 128 pixels. We used

these synthetic images as the input data images I .
Figure 4 (left) shows a portion of one of the input

images of size (96�74) pixels.

Figure 4: Low-resolution image, 96�74 pixels (left).

High-resolution image, 960�740 pixels (right).

Starting from a mesh with all zero heights and all

albedos set to 0.5, the conjugate gradient scheme de-

scribed above was used to infer the surface shown in

�gure 5. The surface is of the same dimension as the

original surface. Not that this is a dense triangulation

{ when projected into the pixel grid of �gure 4 many

triangles fall into one pixel. Thus we infer a super-

resolved surface { a pixel lying on a mountain ridge

does not imply a planar region in the inferred surface,

rather, we infer a surface where highly curved regions

may project into a single pixel. Figure 4 (right) shows

a high-resolution image synthesized from the same re-

gion of the inferred surface as that corresponding to

original data image at the left. This image was ren-

dered at 10 times the resolution of the original data

image. Comparison of the left and right images in

�gure 4 highlights the super-resolution aspect of our

approach, but it should be emphasized that the output

is the surface model in �gure 5.

Because we know the original surface, the error

maps can be computed for both heights and albedos

(�gure 6) to judge the quality of inference. Note the

vertical scales compared with �gure 5. The recon-

struction is accurate, with most errors being in the

regions of high curvature.

6 Conclusions and future extensions

We have developed a very general framework for the

inference of general surface geometry and re
ectance

models from image data, where the model choice is de-

termined by the physical properties of the surface we
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Figure 5: Inferred surface: (a) heights, (b) albedos

wish to infer. We have demonstrated that for the case

of a triangulated surface and Lambertian re
ectance

the parameters of a surface model, namely the heights

and albedos, can be inferred from a set of image data.

We have developed a framework that allows easy in-

clusion of future data observed from the same sur-

face, and easy incorporation of data from other sensing

modalities.

In this paper we have assumed the registration pa-

rameters of input data images to be know in advance.

In principle one can use the Bayesian approach devel-

oped above to infer the registration parameters of the

data images along with surface heights and albedos.

Such inference will include as an essential element the

derivatives of the intensities of synthetic images with

respect to registration parameters.

Another limitation of the current work is related

to the absence of shadows and visible occlusions in

input images. Future developments will include the

ability to compute correctly both the image and its

derivatives when this limitation is lifted. We note that

the derivatives in the presence of shadows/occlusions
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Figure 6: The errors between the inferred and the

true surface: (a) error for heights, RMS = 5 � 10�3;

(b) error for albedos, RMS = 8 � 10�5

are nonlocal, as points laying far apart on the surface

can become correlated. These nonlocal derivatives are

very informative as to the shape of the surface.

Among the other extensions are more realistic re-


ection functions, blurring and modeling of di�erent

surface topologies. Limits to the accuracy of the

superresolved surface reconstruction will also be ex-

plored.

References
[1] J. Bernardo and A. Smith. Bayesian Theory. Wiley,

Chichester, New York, 1994.

[2] J. Foley, A. van Dam, S. Finer, and J. Hughes. Com-

puter Graphics, principles and practice. Addison-

Wesley, 2nd ed. edition, 1990.

[3] B. Horn and M. Brooks. Shape from Shading. MIT

Press, 1989.

[4] S. Nayar and M. Oren. Visual appearance of matte

surfaces. Science, Vol. 267, pp. 1153{1156, 1995.

[5] W. Rees. Physical principles of remote sensing. Cam-

bridge University Press, 1990.

[6] P. Cheesman, B. Kanefsky, R. Kraft, J. Stutz, and R.

Hanson. Super-resolved surface reconstruction from

multiple images. In G.R. Heidberg, editor, Maximum

Entropy and Baysian Methods, pp. 293-308, Kluwer,

the Netherlands, 1996.

[7] A. Patti, M. Sezan, and A. Tekalp. Superresolution

video reconstruction with arbitrary sampling lattices

and nonzero aperture time. IEEE Trans. Image Pro-

cessing, Vol. 6, pp. 1064-1076, 1997

[8] Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong.

A robust technique for matching two uncalibrated im-

ages through the recovery of the unknown epipolar ge-

ometry. Technical Report No 2273, INRIA, Sophia

Antipolis, 1994.


